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Abstract. Accurate detection of the iris is a crucial step in several bio-
metric tasks, such as iris recognition and spoofing detection, among oth-
ers. In this paper, we consider the detection task to be the delineation
of the smallest square bounding box that surrounds the iris region. To
overcome the various challenges of the iris detection task, we present
an efficient iris detection method that leverages the SSD (Single Shot
multibox Detector) model. The architecture of SSD is modified to give
a lighter and simpler framework capable of performing fast and accu-
rate detection on the relatively smaller sized iris biometric datasets. Our
method is evaluated on 4 datasets taken from different biometric applica-
tions and from the literature. It is also compared with baseline methods,
such as Daugman’s algorithm, HOG+SVM and YOLO. Experimental
results show that our modified SSD outperforms these other techniques
in terms of speed and accuracy. Moreover, we introduce our own near-
infrared image dataset for iris biometric applications, containing a robust
range of samples in terms of age, gender, contact lens presence, and
lighting conditions. The models are tested on this dataset, and shown
to generalise well. We also release this dataset for use by the scientific
community.
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1 Introduction

Iris recognition plays a major role in modern biometry because the muscular
pattern of the iris is unique for all humans, and remains unchanged over time.
Detection of the iris region is the first step in iris-based biometric systems, and
is important in the performance [6] of the entire pipeline. However, it is still
a challenging and time consuming task, with much scope for improvement. As
such, we focus only on iris region detection in this paper.

In most iris recognition systems, the subsequent step after iris localisation
is normalisation of the isolated iris region, with further processing done on this
image [6,11]. Several current methods involve localising the iris of the eye with
© Springer Nature Singapore Pte Ltd. 2019
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a circular boundary. These algorithms are time and computationally inefficient.
Moreover, many biometric images usually have partial occlusion of the iris region
by either eyelids or eyelashes. This leads to a noisy image, as can be seen in Fig. 1,
leading to a restriction in the overall performance.

Fig. 1. Noisy normalised image due to partial occlusion by lower eyelid, taken from
[11]

However, with the advent of powerful deep learning techniques that have
dominated computer vision problems in recent years, CNN-based methodologies
can be leveraged to overcome the limitations of the traditional techniques sur-
veyed above. CNNs have shown themselves to be excellent at feature extraction,
detection, and recognition [12,14,18], and have already proven their worth in
several biometric applications, including iris-based [16].

These techniques perform well under noisy conditions [10,27], and show
potential for applications where easier iris region detection might be facilitated
by localising the entire iris region, including occlusions and additional noise
such as the pupil. Thus, for detection in this paper, we use the smallest square
bounding box that completely encapsulates the iris. A novel, lighter and faster
framework for detecting the iris region based on the Single Shot Multibox Detec-
tor [15] is proposed. It is evaluated and compared with Daugman’s [6] algo-
rithm, HOG+linear SVM methodology with sliding window approach [5], and
the YOLO [21] network. The proposed framework shows very promising results
and speedy, accurate detection despite challenges like noise, occlusion and spec-
ular reflections.

The rest of this paper is organised as follows: Sect. 2 presents related work,
Sect. 3 summarises the problem, Sect.4 briefly describes the datasets, Sect.b
describes the methodology, and Sect.6 presents the experiments and results.
Finally, Sect. 7 presents the concluding remarks of this paper.

2 Related Works

The most well-established technique for iris recognition in use today was given in
a seminal paper by Daugman [6]. For iris region detection, it defines an integro-
differential operator which fits the circular boundaries of the iris and the pupil
by maximising the radial Gaussian via gradient ascent.
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This method is modified [28] by applying Hough Transform to a gradi-
ent decomposition to approximate the centre of the pupil, while the integro-
differential operator fits the iris boundary. In [23] the inner boundary is localised
by using the Daugman integro-differential operator, and the outer boundary is
modelled using points considered to be the vertices of a triangle inscribed in the
circular boundary. This is a faster and computationally cheaper technique than
Daugman as it does not involve optimisation.

In [19] the Gabor filter is used to roughly identify the pupil centre, and
subsequently, the intero-differential operator localises the iris such that the real
centre is in the near vicinity of the rough position of the pupil centre. In, [29],
Gabor filters are used for feature extraction and generating a descriptor. Then
the proposed probabilistic fuzzy matching scheme is used to compute similarity
scores.

In [20], the pupil region is isolated via application of the kNN algorithm on
formulated function, and the outer iris region is detected by contrast enhance-
ment and thresholding. In [26], authors present an algorithm which uses the
regional properties of the pupil to extract its area and determines the inner iris
contour by iterating points, and then comparing and sorting them. Similarly the
outer iris contour is determined by an iterative searching methodology, using the
pupil centre and approximate radius.

Recently, deep learning based methods have been effectively used in iris recog-
nition systems and related tasks. The authors, in [17], explore the application
of pre-trained CNNs to the problem of iris recognition, and demonstrate the
effectiveness of their off-the-shelf features for the task. In [2], the authors discuss
in detail the network design of a Fully Convolutional Deep Neural Network for
iris segmentation, and provide comprehensive comparisons with other methods.

In [1], the authors investigate iris recognition in a visible light environment,
and propose a CNN-based method for iris segmentation in the presence of envi-
ronmental noise of visible light. In [4], a multi-task CNN is proposed to carry out
iris localisation, and compute the probability of a presentation attack from the
input ocular image. In [24], the authors evaluate baselines for square bounding
box location of the iris, and set a benchmark for deep learning-based detectors
for the problem.

3 Problem Formulation

Even though Iris based biometric systems are popular, lot of constraints exist.
The main challenges faced by current techniques are high computational cost
and time consumption for iris detection, inability to deal with scale change,
poor performance due to occlusion by eyelashes/eyelid, requirement of iris cen-
tring etc. More limitations arise due to ambient conditions such as noise, light
reflections etc. In this paper, we propose a modified SSD model uniquely suited
for addressing these issues, described in the following sections.
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4 Datasets

Four established datasets were chosen from existing biometric applications and
literature for this study, namely: Notre Dame Cosmetic Contact Lenses 2013
(NDCLD13) [8], Notre Dame Contact Lens Detection 2015 (NDCLD15) [7], IIIT
Delhi Contact Lens Iris (IIITD CLI) [13,30] and CASIA-Iris V3 Interval [3]. An
original dataset is also introduced as a part of this study: the IrisDet dataset,
which has also been evaluated in this paper.

The NDCLD13 data set contains near-IR images, taken under two sensors.
4200 images (3000 in training set and 1200 in test set) are under the LG4000 sen-
sor and 900 images (600 in training set and 300 in test set) are under the AD100
sensor. The NDCLD15 is an expanded dataset that comprises 7300 images, with
6000 images in the training set and 1300 images in the test set. The IIITD CLI
dataset contains a total of 6570 near-IR illumination images taken from 101 sub-
jects using either the Cogent iris sensor or the VistaFA2E sensor. 3000 images
comprise the training set (1500 images each corresponding to the two sensors)
with the rest comprising the test set for validation and testing. The CASTA-Iris
V3 Interval dataset contains 2639 iris images, acquired using a camera that uses
circular near-IR LED illumination. All images have a distinctive circular pat-
tern visible in the pupil region. The training set consists of 1500 images, with
the remainder being used as the test set. Figure 2 shows sample images.

IrisDet Dataset: This dataset, created during the course of this study, contains
1893 images of the ocular region, taken from 175 subjects, and acquired under
near-IR illumination. All images were taken using the IriShield MK2120U single
iris camera, and have a resolution of 640 x 480 pixels (Fig. 3). Although not clas-
sified, subjects satisfy either of three conditions: no contact lenses, clear contact
lenses, and coloured contact lenses. This dataset differs from all others in this
study, in that, about half the images are off-centre, and have been taken in varied
lighting conditions, depending on the usage of a goggle. This adds more diversity
to the training samples, and helps to train more robust models, as demonstrated
in Sect. 5. The training set contains 1300 images, with the remaining 593 being
used as the test set. We make this dataset and its annotations available to the
scientific community.!

5 Proposed Methodology

5.1 Network Framework

The proposed iris detection framework is based on the Single Shot MultiBox
Detector(SSD) [15], which can be broken down into two simple major steps:
extraction of multi-scale feature maps, and application of small convolution fil-
ters for object detection. The starting point is the SSD300 variant, wherein the

! Print and sign the license agreement available at Saksham Jain’s website. Scan and
email it to both authors, upon which the download link to the dataset will be sent
to the interested researcher.
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Fig. 2. Dataset sample images (left to right, top to bottom) (i)-NDCLD:AD100, (ii)-
NDCLD:LG4000, (iii)-NDCLD15, (iv)-IIITDCLI:Cogent, (v)-IIITDCLI:VistaFA2E,
(vi)-Casia-IrisV3

Fig. 3. (i) Shows an image from the introduced IrisDet and (ii) shows manual annota-
tion (https://github.com/tzutalin/labellm)

image input resolution is 300 x 300, after which the convolutional layers are
applied to the image. The SSD benefits from transfer learning, and uses the
VGG16 model [25], trained on ImageNet [14], to do so. The architecture of the
network is demonstrated in Fig. 4. The early network layers upto Conv 5_3 form
the base of the network, and have the transferred VGG16 pre-learned weights.
Transfer learning is used because it enables the model to directly obtain the
learned “objectness” [9], from the pre-trained network, and thus allows it to
successfully learn the iris features from smaller-sized training sets, despite noise
or partial occlusion.

The SSD uses multi-scale feature maps for object detection [15], to better
handle variation in location, scale and aspect ratio. Different resolution layers
are better at detecting objects at different scales. This eliminates the need for
the eye to be at a set distance from the camera, except due to inherent camera
constraints. These constraints mean however, that biometric cameras capture
images of the entire ocular region, meaning that the iris size itself is constrained.
This allows for the removal of lower resolution feature maps which are primarily
for detecting large-sized objects. Therefore, in the proposed variant (Fig.4),
only the 38 x 38, 19 x 19 and 10 x 10 feature maps are taken as the prediction
source layers. This has the added effect of making the model lighter [31], giving
it greater speed without much loss of accuracy for this application. All feature
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Fig. 4. Architecture of the proposed model

maps contain a certain number of default bounding boxes (discussed in Sect. 5.2)
to start off, and bounding box predictions based on them are made.

The objectness scores [9] and the bounding box location offsets (offset
between predicted and default boxes) are determined by applying the object-
ness and location filters respectively to the feature maps. The default boxes are
matched to the groundtruth using objectness, and the model is further modified
and simplified by a logistic regression layer to binarise the objectness scores.

5.2 Default Bounding Boxes

The HOG+SVM [5] pipeline uses a sliding window strategy for detection, which
is limited in terms of speed and is computational cost. Use of region proposals
(eg. Faster R-CNN) [22] is much better in terms of both, but prone to mistaking
background patches as objects due to inability to contextualise the whole picture.
YOLO [21] overcomes this by working in a global context. However YOLO itself
has limitations, in that it is spatially constrained on boundary box predictions
[21] and somewhat struggles when different scales are involved. SSD, however,
overcomes all of these limitations, since it “sees” the whole picture, and adds
several feature layers after the base network, after which manually pre-selected
bounding boxes are used, as per the requirements of the application.

In the proposed approach, the three feature maps are broken down into a grid
formed by 1 x 1 cells, with the default bounding boxes centred on these cells.
There is a single prediction per default box, to keep the number of predictions
manageable. These centres are given by [15]:

i+05 j+05
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where s, is the size of the n'* feature map, and 7,5 € [0,1,2,3....|s,|). 4 and j
represent the indexes for the default box and matched groundtruth box, respec-
tively. The bounding box location offset, ie. offsets of the predicted bounding
boxes to the default boxes for each cell (discussed in Sect.5.3), is used for box
location in place of a global coordinate system.
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According to the defined problem, the iris bounding box must be the smallest
square bounding the iris. Thus, the aspect ratio of the default bounding boxes
is chosen as 1, with the side length of the square determined by the scales,
sci € {0.1,0.18,0.33} selected as per the requirement [15], from the feature map
layers. An extra default box with scale, sc = |/s¢; - 5¢y1 is also added for each
cell.

5.3 Matching the Default Boxes to the Groundtruth

This step is required so that the groundtruth box can be assigned to a specific
default box with which it has the highest IoU (Intersection over Union) value. If
the two have a higher IoU value than 0.5 (taken as the threshold in this paper),
the default boundary box is considered to be a positive match (the box label is
set to 1) otherwise it is a negative match (the box label for is set to 0), due to
the logistic decision boundary. Simultaneously, the actual objectness score, and
the location offset are also recorded. The objectness score, p always lies between
0 and 1, and since the detection task is solved involving a logistic function layer,
the bounding box label z is either 0 or 1. The bounding box location offset is
given [15] by:

CTgt — CTdeyf

C_-/E:
J

Ade f
cy _ CYgt — CYdef
J Qde f
a
a = log(—2-
Qdef

where (cz, cy) is the matched bounding box centre, j means the same as above,
and a is the side of the box. The indexes def and gt respectively denote the
default bounding box and groundtruth bounding box.

In case there is conflict where two default boxes are matched with the same
groundtruth, the one with the higher IoU value is chosen. Once the positive
matches are finalised, the calculated cost function (described in Sect. 5.4) for the
corresponding predicted bounding boxes is minimised.

It is natural that far more negative matches are present than positive ones.
This can lead to unstable training, due to the resulting class imbalance. Thus,
hard negative mining is carried out [15], keeping the ratio of positive matches
to negatives at 1:3, for stabler training. This way, the class imbalance can be
taken advantage of by having the model learn which predictions are poor. Thus,
negative samples during the training phase have a positive impact on actual
performance. This is also an added advantage over YOLO, since incorrect local-
isation is described to be the main source of errors for it [21].

5.4 Loss Function

The loss function or the training objective is a weighted combination of the
individual loss functions for the confidence of class prediction, ie. the objectness



58 S. Jain and I. Sreedevi

score, and the bounding box location offsets. The confidence loss can be described
by:

N N
Leony = — Z x;log(p;) — Z (1 —x;)log(1—p;)
i€Pos jENeg

where, p, x, i, and j hold the same meanings as in the above sections. The
location loss can be described by:

N
Lijpe = Z Z x" Smoothry (I;" — g7")

i€ Pos me(cx,cy,a)

The location loss is calculated using the Smooth L1 loss, ie. the absolute value
loss which is less sensitive to anomalies than L2. Here, [ denotes the predicted
box offsets, and g denotes the matched groundtruth box parameters. The final
loss function [15] is given bye:

1
Lnet = N(aLloc + Lconf)

The value of « is determined via cross validation, and is taken as 1 here.

6 Experiments and Results

In this paper, we evaluate the proposed SSD-based framework, and compare it
with the well-established Daugman [6] technique?, as well as the HOG+SVM and
YOLO baselines described in [24]. The implementation of our methodology uses
the popular Keras library and is done in python. The experiments are performed
on the five datasets mentioned in Sect. 3, on a single Nvidia GeForce GTX 960M
GPU accelerated system.

Fig. 5. Positive (green bounding boxes) and Negative (red bonding boxes) Results
(Color figure online)

2 Implementation: https://github.com/Qingbao/iris.
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The training and testing splits for the datasets are given in Table 1. We use
four standard metrics, namely Accuracy, Precision, Recall, and Intersection over
Union (IoU), for the evaluation.

Table 1. Train/test splits for the five datasets

Dataset training/ |NDCLD13 NDCLD15 IIIT CLI Casia |IrisDet
test split AD100|LG4000 VistaFA2E | Cogent | IrisV3
Training set 600 3000 6000 1500 1500 1500 |1300
Test set 300 1200 1300 1530 2040 1139 | 593

Since we are not using any large datasets, we utilise data augmentation such
as random expansion, flipping and random cropping the images for improved
performance. The proposed method makes use of an Non-Maximum Suppression
threshold of 0.5, and only those iris bounding squares are accepted, which have
a greater than 0.5 objectness score.

Examples of the detection results obtained with our method are shown in
Fig. 5. Most failure cases seem to occur in images where the iris is too close to
the image border. We perform four experiments, as described below:

Individually Trained and Tested: In this experiment, all models are trained and
tested on images corresponding to the same sensor with the Daugman method
being applied to the test sets. The proposed approach gave the best results in all
the metrics as well as lesser processing time than the other methods (with only
YOLO being the faster). The state of the art results obtained are demonstrated
in Table 2.

Collectively Trained and Tested: In this experiment, the models are trained on
a combined training set taken from all the datasets, and consequently tested
on a similarly combined test set, so as to check the ability of the methods to
generalise when more varied training samples are provided. Once again, the
proposed scheme outstrips the other methods across all metrics (with YOLO
being the closest in performance), showing more robustness. Table 3 shows the
results obtained, and Fig.6 portrays the precision vs recall curve for both our
proposed SSD variant and YOLO, and highlights the superiority of the proposed
scheme.

Trained on Four, Tested on One: In this experiment, the models are trained on
a combined training set (containing 11800 images) taken from any four datasets,
and subsequently tested on a single test set taken separately from the remaining
dataset, one at a time. Due to much greater variation and amount of training
samples, all models generalise well, with our proposed method outperforming the
others, as shown in Table4. However, when tested against the IrisDet dataset,
the values across all metrics are relatively lower, which may be attributed to the
fact that all other datasets have a very low representation of images in which
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Table 2. Trained and tested on same sensor

Metric Method NDCLD13 NDCLD15IIIT CLI Casia |IrisDet
AD100/LG4000 VistaFA2E |Cogent |IrisV3
Accuracy Daugman 94.28 |97.53 (96.67 95.38 96.34 97.38 94.74
HOG+SVM|96.57 [96.77 [96.83 97.93 96.61 92.23 96.16
YOLO 98.39 |98.68 98.48 98.28 98.19 97.21 96.60
Proposed [99.31 [99.41 (99.26 99.62 99.33 98.49 [98.26
Precision Daugman [82.49 [92.15 (89.80 89.34 92.82 96.23 [90.06
HOG+SVM|94.35 [92.72 [91.18 92.22 87.99 88.48 [86.58
YOLO 95.12 |97.83 |95.76 93.71 95.88 96.02 [92.65
Proposed |97.47 [99.17 |97.22 95.23 97.02 98.19 [94.60
Recall Daugman [84.60 [93.41 [91.63 85.49 86.24 96.38 [95.92
HOG+SVM|92.39 [96.72 [96.04 94.51 96.44 96.97 [95.13
YOLO 98.78 |97.81 |97.28 97.85 96.02 97.79 95.67
Proposed |99.56 [98.26 [97.99 98.42 97.51 98.49 [96.50
ToU Daugman |80.41 [89.67 [85.34 80.82 82.61 90.95 [90.12
HOG+SVM|87.52 [87.76 [86.85 87.23 84.76 86.17 [85.16
YOLO 93.84 |95.66 93.25 91.76 91.84 91.24 90.73
Proposed |94.25 [97.21 [94.98 93.67 93.10 92.36 [92.04

Table 3. Collectively trained and tested

Method Training set | Test set | Accuracy | Precision | Recall | IoU

Daugman - All five | 86.54 86.28 94.04 |81.09
HOG+SVM | All five All five |89.67 90.16 92.71 |91.14
YOLO All five All five | 98.32 95.20 97.13 | 92.54
Proposed All five All five | 99.27 96.67 98.91 |95.52

the iris is significantly off-centre. This lowers the robustness of such a model in
a potential single iris biometric application where proper centering may not be
a guarantee.

Trained on One, Tested on Four: In this experiment, we see how well the trained
models generalise across datasets. This means that the models are trained on
separate training sets consisting of 1800 randomly selected images from each of
the five datasets (one at a time), and are subsequently tested on a single test set
comprising 600 testing samples from the remaining datasets (each dataset having
equal representation). For all methods, there is a fall in the values of each metric,
which may be attributed to the differences in the way the images were taken,
as well as the inherent differences in the camera sensors and environments. The
results are presented in Table5, and show that while all the metric values are
higher under our proposed methodology, they are also relatively higher across all
metrics when trained on the IrisDet dataset. Thus demonstrating that IrisDet
allows for a higher generalisation capability regardless of the model.
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Fig. 6. Precision vs Recall curve comparison for our SSD-based model and YOLO

Table 4. Trained on four datasets and tested on the remaining one

Method Training set | Test set Accuracy | Precision | Recall | IoU
HOG+SVM | Others NDCLD13 | 92.16 94.26 90.98 | 92.64
Others NDCLD15 | 92.16 93.12 91.60 | 94.25
Others IIITDCLI |93.45 93.62 94.20 |93.56
Others CasiaV3 | 89.96 88.62 89.23 190.13
Others TrisDet 94.23 95.32 93.69 |94.36
YOLO Others NDCLD13 | 97.68 97.15 98.32 |96.98
Others NDCLD15 | 96.85 97.23 96.16 |98.32
Others IIITDCLI |95.67 95.50 96.68 |95.63
Others CasiaV3 | 96.85 98.23 97.96 | 95.64
Others TrisDet 94.13 94.51 93.65 | 95.67
Proposed Others NDCLD13 | 99.76 98.34 98.68 |97.13
Others NDCLD15 | 99.27 98.58 97.24 |96.86
Others IIITDCLI |99.38 98.95 97.78 |96.67
Others CasiaV3 | 98.98 98.85 97.45 |97.17
Others IrisDet 99.03 98.15 96.89 | 96.06

For all four metrics, our SSD-based method yields the best results. The pro-
cessing speed of the proposed method (0.11s per frame) is also much faster
than that of Daugman’s (5.20s per frame) and HOG+SVM (6.72s per frame),
although it loses out to the YOLO detector (0.043s per frame). However, if a
more powerful GPU is used, the detection speed can be increased much further.
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Table 5. Trained on a Single Dataset and Tested on Collection of the Remaining Four

Method Training set | Test set | Accuracy | Precision | Recall | IoU

HOG+SVM | NDCLD13 | Others |86.65 85.94 87.25 | 83.16
NDCLD15 |Others |88.16 87.64 89.32 | 86.00
IITDCLI | Others |89.38 90.42 91.03 |87.97
CasiaV3 Others | 82.67 82.88 83.26 | 80.01
IrisDet Others |90.67 91.08 89.89 | 83.16
YOLO NDCLD13 | Others |94.64 94.23 93.46 |91.09
NDCLD15 | Others |94.89 95.08 93.61 | 90.92
HITDCLI | Others |93.64 93.41 92.63 |91.39
CasiaV3 Others |91.08 90.86 90.31 |89.84
IrisDet Others |94.36 94.03 92.86 |91.81
Proposed NDCLD13 | Others |95.75 95.86 95.33 |93.14
NDCLD15 | Others |96.95 95.83 96.22 | 93.10
IIITDCLI | Others |97.08 95.90 96.04 | 93.63
CasiaV3 Others | 95.66 94.84 94.13 |92.86
IrisDet Others |97.87 96.69 96.63 |94.14

7 Conclusions

In this paper, we adapt the SSD model for the detection of the iris region,
which overcomes several limitations of current techniques such as high computa-
tional cost for iris location, and inability to deal with noise, specular reflections,
change in scale, poor performance due to occlusion by eyelashes/eyelid, etc. The
proposed SSD-based model shows state-of-the-art results, and demonstrates its
superiority over existing techniques. Additionally, we introduce and evaluate the
IrisDet dataset, which provides the most robust training response. The model,
trained on IrisDet, is capable of iris detection on varying scales of ocular images
(depending on the eye to camera distance), and also handles off-centre irises. The
model shows a lot of potential for extending it to end-to end iris recognition.
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