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Abstract

Deep learning techniques, especially Convolutional Neural Networks (CNN), dominate the benchmarks for most computer
vision tasks. These state-of-the-art results are typically obtained through supervised learning, for which large annotated
datasets are required. However, acquiring such datasets for manufacturing applications remains a challenging proposition due
to the time and costs involved in their collection. To overcome this disadvantage, a novel framework is proposed for data
augmentation by creating synthetic images using Generative Adversarial Networks (GANs). The generator synthesizes new
surface defect images from random noise which is trained over time to get realistic fakes. These synthetic images can be used
further for training of classification algorithms. Three GAN architectures are trained, and the entire data augmentation pipeline
is implemented for the Northeastern University (China) Classification (NEU-CLS) dataset for hot-rolled steel strips from
NEU Surface Defect Database. The classification accuracy of a simple CNN architecture is measured on synthetic augmented
data and further it is compared with similar state-of-the-arts. It is observed that the proposed GANs-based augmentation
scheme significantly improves the performance of CNN for classification of surface defects. The classically augmented CNN
yields sensitivity and specificity of 90.28% and 98.06% respectively. In contrast, the synthetically augmented CNN yields
better results, with sensitivity and specificity of 95.33% and 99.16% respectively. Also, the use of GANs is demonstrated
to disentangle the representation space and to add additional domain knowledge through synthetic augmentation that can be
difficult to replicate through classic augmentation. The proposed framework demonstrates high generalization capability. It
may be applied to other supervised surface inspection tasks, and thus facilitate the development of advanced vision-based
inspection instruments for manufacturing applications.
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Introduction

In today’s world, the industry is facing a challenge in the use
of supervised learning algorithms for classification. Despite
the various advantages of these learning algorithms, their
performance decreases when trained on a real-world dataset.
One reason is a shortage of training data due to factors that are
typical to the manufacturing industry. With the advancements
made in modern manufacturing processes and implementa-
tion of quality programs including six sigma, the number of
good samples greatly exceeds the number of defective sam-
ples. The number of defectives are sometimes to the tune of
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parts per million (ppm). Therefore, a class imbalance exists
in manufactured samples. However, if we discard the surplus
of non-defective samples in order to keep class balance, the
total dataset size is drastically reduced. Thus, to create a large
dataset of defects, there is an opportunity cost involved due
to having to manufacture in large numbers without address-
ing the defects and their causes. Therefore, manufacturing
defect datasets are typically smaller.

Industrial anomaly detection is a highly challenging task
because what constitutes a defect and what does not, can be
considered a soft boundary, which can lead to false-negatives
or false-positives depending upon the priority of classifi-
cation. In addition to the shortage of the sample data, the
available datasets can contain multiple categories of defects
inside their positive (defective) class which can be difficult
to model. One method to handle this classification problem
is to train the classifier only on the positive (defective) sam-
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ples. In such a case, even if the data contains multiple classes
of defects, there are no non-defective samples. This leads
to a cautious classification boundary, as only when a sam-
ple does not correspond to any class of defects with a high
enough confidence, is it classified as negative (non-defective)
(Lai et al. 2018). However, this approach is still unable to
handle the problem of small dataset size, which is partic-
ularly important when working with Convolutional Neural
Networks (CNNs). The standard solution is the augmenta-
tion of the training data by rotating, reflecting, cropping,
translating and scaling existing images to increase the dataset
size and include some additional domain knowledge such as
rotation-invariance, size-invariance, etc.

Deep neural networks have lower performances on small
datasets when trained using convolutional techniques in com-
parison to traditional machine learning methods such as the
support vector machine (SVM). But it has been experimen-
tally proven that deep networks outperform such methods
when trained on larger datasets (Feng et al. 2019). A signifi-
cant reason for this parity is that SVMs rely on handcrafted
features while deep neural networks are purely data-driven
and as such, are better able to extract and utilise salient fea-
tures from larger datasets for the classification task (Tabernik
et al. 2020).

In this paper, authors investigate the use of GAN’ to sam-
ple additional synthetic data by modeling the training data
distribution for manufacturing datasets. This synthetic data
can be used for augmentation of the real data that is subse-
quently used to train the CNN for classification. Although
GANSs cannot produce images with perfect fidelity despite
recent advancements, the authors of (Dosovitskiy et al. 2015;
Richter et al. 2016) demonstrate marked improvements in
results after synthetic augmentation of the data even with
poorer fidelity images. Thus, expanding the dataset with
these realistic, if slightly degraded, synthetic samples helps
in reducing overfitting and improving the accuracy as well as
the generalization capability of the CNN classifier (Madani
et al. 2018). Authors verify these assertions and evaluate the
suitability of the entire pipeline for real-world applications.

InFrid-Adaretal. (2018), the authors demonstrate promis-
ing results for medical image classification tasks by employ-
ing the use of GANs for data augmentation directly as a
pre-processing step without any additional data. In this paper
an attempt has been made to further build upon these works
for surface defect detection and classification tasks.

Motivation and contribution

Apart from the typically smaller size of manufacturing
datasets used in defect detection and classification tasks, two
other specific problems occur. Features present in the intra-
class defects may be random and highly diverse whereas
the features in the inter-class defect may be nearly identi-
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cal (Song and Yan 2019). Also, the defect images can vary
because of the ambient illumination, slight material changes,
and the severity of the defect that lead to a change in the grey
value. This change can have an effect on the stability of the
obtained defect features and may result in a reduction in the
recognition rate.

While the application of GANs to expand the dataset with
realistic but distinct fakes of the training data is straight-
forward, it is capable of handling the above two issues.
Hand-crafted features are not required for deep learning algo-
rithms. GANSs also do not depend upon the user and instead
model all the sources of variation (features) in the dataset, by
learning the distribution of the training samples. Thus, as long
as distinct features exist, even if they are too distributed for
intra-class defect samples or too similar for inter-class defect
samples, GANs have the potential to capture and model them
correctly.

Data pre-processing involves transformation of the dis-
crete distribution of training samples into a continuous
distribution. It allows for GANs to model even challenging
features present in the dataset and generate examples along
the continuum. For example, if samples with different levels
of severity of defects are used, the GAN would learn to dis-
tinguish between them and generate samples of all levels of
severity, though they are not explicitly present in the training
data. With recent advances made in GAN architectures (Chen
etal. 2016), it has become possible to control the latent space
of the generator which captures such information. Thus, if
sufficient samples of the features affecting the grey values
are generated, a more robust classifier can be trained.

Following the work of Madani et al. (2018) and Frid-Adar
et al. (2018), the use of GANs as a pre-processing step for
manufacturing tasks is proposed in this study. Further, the
use of GANs for disentangling the representation space of
the training data is explored. Thus, the objective of the paper
is three-fold:

e To evaluate the efficacy of GAN architectures for syn-
thetic augmentation of small manufacturing datasets, and
to investigate GAN-based procedure as a standard aug-
mentation technique during pre-processing.

e A simple CNN trained on synthetically augmented data is
shown to outperform more complex CNN based feature
extractors trained with classic augmentation.

e To explore and disentangle the latent space of the train-
ing data for obtaining a degree of control on the additional
domain knowledge locked within the dataset that cannot be
obtained through traditional classical augmentation tech-
niques.

An illustration is provided to demonstrate the proposed
augmentation and CNN classification pipelines and to evalu-
ate their performance on the NEU-CLS dataset of surface
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defects in hot-rolled steel strips. The NEU-CLS dataset
contains 6 balanced classes of defective samples but no non-
defective samples. Further details of the dataset are given in
“Surface defects in hot-rolled steel strip” section.

Literature survey

Generative adversarial networks were first introduced in
Goodfellow et al. (2014). They implemented discriminator
and generator which were based on multi-layer perceptrons
and were trained using backpropagation.

GANSs have gained popularity in recent times, as numer-
ous variations of GANs have been developed, which further
improve the quality of the generated images and also widen
the scope for countless applications. Deep convolutional
generative adversarial network (DCGAN) constitutes a con-
strained architecture that reduces the gap between CNNs for
supervised and unsupervised learning (Radford et al. 2015).
Least square generative adversarial network (LSGAN) uses
least square as a loss function for the discriminator which
leads to higher quality image generation and more stable
training (Mao et al. 2017). In a conditional generative adver-
sarial network (CGAN), the discriminator and generator were
conditioned to generate images based on class labels (Mirza
and Osindero 2014). Conditional deep convolutional gen-
erative adversarial network (C-DCGAN) is a combination
of DCGAN and CGAN. C-DCGAN utilizes convolutional
neural network for feature extraction and with a conditional
extension to augment data (Luo et al. 2020). The InfoGAN
is based on an information theoretic formulation that allows
for manipulation of the latent space (Chen et al. 2016).
Also, InfoGAN uses a sleep—wake algorithm for training
(Chen et al. 2016). Wasserstein generative adversarial net-
work (WGAN) improves the training algorithm to avoid
problems of mode collapse and provides better learning
curves (Arjovsky et al. 2017). Auxiliary classifier generative
adversarial network (ACGAN) employed label conditioning
(Odena et al. 2017) while energy based generative adversar-
ial network (EBGAN) involves the use of energy functions
for discriminator and generator as a producer of low energy
samples (Zhao et al. 2017). Boundary seeking generative
adversarial network (BGAN) trains the discriminator with
a heuristic of difference between target and resulting images
(Hjelm et al. 2018) and boundary equilibrium generative
adversarial network (BEGAN) uses an equilibrium based
method on top of WGAN (Berthelot et al. 2017).

Some of the key applications of GANSs include handwrit-
ing recognition (Tian 2017), facial age progression (Zhang
et al. 2017), super-resolution imaging (Ledig et al. 2017),
visual saliency prediction (Pan et al. 2017), object detection
(Li et al. 2017), and unsupervised domain adaptation (Bous-
malis et al. 2017). Owing to their excellent results in image
synthesis, researchers have begun using GANs for data aug-

mentation. These have been used initially to improve image
quality and then for further training (Shrivastava et al. 2017),
for generating different versions of an image (Antoniou et al.
2018), and even for imposing emotions on bland faces to aug-
ment smaller classes (Zhu et al. 2018). GANs have also find
application in data augmentation for medical imaging tasks
such as denoising CT scans (Wolterink et al. 2017), medical
image segmentation, brain MRI segmentation and synthetic
augmentation (Moeskops et al. 2017), and image segmenta-
tion of the liver (Yang et al. 2017), of skin lesions (Izadi et al.
2018) and of the brain (Alex et al. 2017).

In the manufacturing industry, computer vision is widely
used with applications in, magnetic tile surface defects
(Huang et al. 2018), additive manufacturing anomaly detec-
tion (Scime and Beuth 2018; Davtalab et al. 2020), steel
surface defect inspection (Hao et al. 2020; Sun et al. 2016),
defect detection in lithium ion battery electrodes (Badmos
et al. 2020), roughness prediction (Grzenda and Bustillo
2019) etc. GANs models, especially after improvement of
its training algorithm (Gulrajani et al. 2017), have been
proposed for anomaly detection in structured and arbitrary
textured surfaces (Lai et al. 2018) and unsupervised inspec-
tion of surfaces (Zhai et al. 2018).

Surface defects in hot-rolled steel strip

Steel-strip, being one of the most elemental components in
the steel industry, has a high impact on the characteristics
of the end product. Due to limitations in manufacturing pro-
cesses, it encounters various defects like inclusion, surface
defects, etc. (Song and Yan 2013). These surface defects can
be caused due to many factors, which can be broadly divided
into the following two categories:

e Defects on the continuous slabs introduced during the
rolling process.

e Defects due to inappropriate rolling technique or foreign
body inclusions in the strip-roll interface (Devadas et al.
1991; Yu et al. 2013).

Surface defect detection and classification

The main purpose of anomaly detection is to find out
deviations or outliers from normal data. It has many indus-
trial applications, from system health monitoring (spotting
a malignant tumour in an MRI scan), to fault detection
in manufacturing processes (through visual inspection of
castings or welds). In the case of steel strips, the devia-
tions can be in the form of surface defects. Many computer
vision approaches based on feature extraction utilizing deep
learning have been used for anomaly detection and classi-
fication (Lai et al. 2018). Owing to the data requirements
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of deep learning models, and the typically small size of
manufacturing datasets (and sometimes class imbalance),
data augmentation is required. Basic data augmentation tech-
niques can be graphical transformations such as translation,
rotation, scaling, mirroring, etc. These may not be able
to add sufficient information to the dataset after a certain
limit. Hence, generative models like generative adversarial
networks (Goodfellow et al. 2014), variational autoencoder
(Kingma and Welling 2014), restricted Boltzmann machine
(Carreira-Perpifidn and Hinton 2005), Helmholtz machine
(Hinton et al. 1995) can be employed. Generative Adversar-
ial Networks (GANSs) is selected for this work. GAN consists
of two convolutional neural networks, namely Generator and
Discriminator. These are trained in an adversarial process, in
which the generator generates fake images while the discrim-
inator distinguishes between the fake and real images. GANs
have recently gained popularity since good quality synthetic
images can be generated using them. Detailed discussion on
GANS is provided in “Synthetic augmentation” section.

Further, the details of the augmentation process for the
surface defect dataset are provided in “Data augmentation”
section, while for the detection and classification process
we use the “Convolutional neural network™ architecture as
described in subsection.

Dataset

The dataset used to evaluate the effectiveness of the proposed
model was generated by Northeastern University (NEU).
This dataset includes six frequent hot rolling defects for steel
strips: Rolled-in scale (RS), Patches (Pa), Crazing (Cr), Pit-
ted Surface (PS), Inclusion (In) and Scratches (Sc).

Data set consists of a total of 1800 sample images for the
above-mentioned defects, i.e., 300 sample images for each
defect, with a resolution of 200 x 200 pixels and a grayscale
value from O to 255. In this study, the intra-class defects have
been defined as those having the same kind of defect while
the inter-class defects are those having the different classes of
the defect. Intraclass defects can be easily observed in Fig. 1,
for example, different orientations of cracks. The inter-class
defects may have identical aspects, for example, in RS, Cr,
PS. Also, the defect images can vary due to illumination and
material changes, (Song and Yan 2019).

Classification

Classification refers to a machine learning technique used
to determine the class or categorization that a given object
belongs to. The output of a classification algorithm is a dis-
crete response with the predicted class as the output. Any
architecture or algorithm for classification tasks is said to
work by observing the labeled samples in the given training
set, and then uses a set of criteria (whether rule-based or by

@ Springer

pitted surface

rollod-in seale  patches crazing inclusion scratches

Fig. 1 Inter and Intraclass surface defects (Song and Yan 2019)

learning over time) to attempt drawing conclusions in order
to classify the samples in the test set. Provided with one or
more inputs, a classification model attempts to predict the
value (e.g. class labels) of one or more data samples (e.g.
surface defects).

In this work, effort has been made to classify surface
defects in hot-rolled steel strips using a Convolutional Neu-
ral Network-based deep learning approach. This approach is
employed as the CNN has powerful architectures for image
classification tasks, and the way forward for future applica-
tions (Deng et al. 2009). However, CNN typically requires
massive amounts of data. Therefore, CNN-based classifica-
tion becomes feasible for this study as the NEU-CLS dataset
can be appreciably enlarged via data augmentation. Refer
“Data augmentation” section for detailed discussion.

Convolutional neural network

In fully connected neural networks (FNNs), each neuron or
node in all layers (disregarding the input layer), is connected
to every neuron in the preceding layer. Matrix multiplication
is utilized to obtain the weights and biases for each neuron,
and there are thousands and thousands of such neurons in
a deep network. This makes the use of FNNs not only very
computationally intensive but also requires a large amount of
time to successfully train them. To overcome this, CNN was
proposed as an extension to standard deep neural networks.
CNN uses an operation known as a convolution in their layers
rather than matrix multiplication, and as a result, substantially
decreases the number of parameters to train in the network,
along with achieving a faster forward-propagation process
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that makes their training and implementation faster. This is
advantageous because the learned convolutional filters are
consequently used for the entire image. Another major reason
for their widespread use and success in most computer vision
tasks is that all optimization techniques (e.g. Backpropaga-
tion with stochastic gradient descent) used in standard FNNs
are also applicable for CNNs.

Implementation details for baseline

The CNN which was used for classification had 3 convolu-
tional layers. The first and second convolutional layers had 32
filters of size 3 x 3 while the third convolutional layer had 64
filters of size 3 x 3. The Rectified linear unit (ReLLU) activa-
tion function was used for all the layers. The fully connected
layer had 256 neurons. The model was trained for images
with 3 colour channels, i.e., Red Green Blue (RGB). In the
CNN, Adam optimizer is used with softmax cross-entropy
with logits as the cost function. The optimizer had a learn-
ing rate of 0.0001. For training and validation, a train-test
split of 9000 images and 1800 images respectively was used
while keeping the classes balanced. During the testing time,
the same validation set was utilized for all experiments. The
data consists of 6 classes with the mapping: Cr: 0, In 1, PS:
2, Pa: 3, RS: 4, Sc: 5 which was used for classification. The
training of the model was done in batches of size 60 for 20
epochs (Fig. 2).

Implementation details for fine tuning

The above architecture was pre trained on a smaller subset!
of the imagenet dataset (Deng et al. 2009) and consequently
fine-tuned on the actual 9000 training images and 1800 val-
idation images, keeping the training conditions the same.

Data augmentation

Data augmentation is a procedure carried out to enlarge a
small input training set to get more effective results. Most
important information can be extracted from the small train-
ing set when it is subjected to the augmentation process,
because it allows us to include some knowledge about poten-
tially never-before-seen data during training, without having
to collect additional data. For example, if the end applica-
tion is such that image features can appear in any orientation
during the testing phase, it would be useful to introduce ran-
domly rotated samples of the existing dataset into the training
procedure.

In the data augmentation operation, the additional input
training samples can be created by two methods: (i) geo-
metrically transforming (usually, affine transformations are
performed) the given training samples to increase input vari-

200x200

Convolution
Ix3@32

Sub-sampling

Convolution
3x3@32

Sub-sampling

Convolution
3x3@64

Sub-sampling

Dense 256
Dropout 0.5

Fig.2 Architecture of the proposed CNN

ety, in a process known as classic transformation, or (ii)
generating new never-before-seen samples using generative
models trained on the existing input training sample, in a
process known as synthetic data augmentation.

To be successfully benefitted from data augmentation
techniques, it is important to keep in mind the details and
specifics of the dataset, the network framework, and the task,
because haphazard or unfit augmentation rules and opera-

@ Springer



Journal of Intelligent Manufacturing

tions may lead to even worse performance of the model than
if the dataset had not been augmented.

The following sections, first the classic augmentation
operation along with its implementation has been described
and then our novel approach to synthetic augmentation using
generative adversarial networks for surface defect detection
and recognition task has been illustrated.

Classic augmentation

Thousands of parameters must be trained for even small
CNNs. When deep learning architectures with multiple lay-
ers are built, or when the training set is limited in terms of
the number of images, there is a high likelihood of overfit-
ting. One of the standard solutions to resolve the problem
of overfitting is to artificially enlarge the dataset via data
augmentation. For greyscale images, classic augmentation
refers to data augmentation techniques that involve geo-
metric coordinate transformations, e.g. random translation,
random rotation, scaling, random flipping, elastic deforma-
tion, and shearing. For our particular application—surface
defect detection and recognition —elastic deformation or
shearing has not been used so as to protect the useful sur-
face defect features or characteristics that depend upon the
shape of the image.

Implementation details

The dataset was expanded using the classic data augmenta-
tion method. The following transformations were applied to
the dataset:

e The images were randomly rotated in clockwise or anti-
clockwise direction with an angle ranging from 0° to 180°.

e The images were randomly flipped about the vertical or
horizontal axes.

e The images were translated by random sampling of [X,y]
pixel values in a set range.

e The images were randomly rescaled to a factor between
0.5 to 1.5 times.

Ultimately, all images were resized to the original size
of 200 x 200 pixels by bicubic interpolation. With the help
of these transformations, the size of the training set was
increased to 9000 images. Three such training sets were
generated, and the mean score is reported in “Results and
discussion” section.

A major issue that arises with classic augmentation is that
the improvement offered saturates after a point (Richter et al.
2016). This is because no new additional information is actu-
ally being added with classic augmentation, and after a while,
the model becomes robust to the changes brought on by sim-
ple transformations since only a limited set of operations
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can be performed. Thus, to introduce more diversity into the
training samples, synthetic data augmentation is required.

Synthetic Augmentation

Synthetic data augmentation differs from classic augmenta-
tion where the additional images are synthetically generated
fakes, which closely resemble the actual input images rather
than being the transformed input images. Although data aug-
mentation for computer vision tasks has long existed, the
advent of advanced GANs has provided a unique opportu-
nity for taking it further.

A correctly trained GAN can augment each source of
variance in the dataset, simultaneously obtaining a con-
tinuous distribution of training samples by transforming
the discrete distribution. If a GAN is trained on suffi-
cient samples at different states of rotation, it will learn
to generate samples at any state of rotation. Therefore, a
GAN trained on classically augmented data can learn to
replicate its effects and include additional domain knowl-
edge such as—translation-invariance (e.g. by horizontal or
vertical-shift) or size-invariance (e.g. by random resize), etc.
However, the true power of GANs comes to light when con-
sidering more challenging features such as the severity of,
or size of the image area affected by, the defect. It would
be extremely difficult to model the shape, impact, and size
of the defect and then use just affine transformations to pro-
duce augmentations. However, given sufficient samples of
different discrete levels of severity, the GAN will infer the
model on its own and learn to generate samples along the
continuum of severity. Since CNNs are powerful discrim-
inators, any GAN models will require careful and stable
training, not to mention correctly tuned parameters to obtain
usable results. While there is no good theoretical basis for
how to select hyperparameters for training stable GAN mod-
els, which remains an open problem, there exists empirically
demonstrated heuristics that work in practice. The authors
of DCGAN (Radford et al. 2015) provide recommendations
for stably training GANs which are considered as the defect
starting point. In this paper, authors use the default values
for the hyperparameters, as described in the respective GAN
implementations to eliminate the need for optimal hyperpa-
rameter search. These values are referred to as out-of-box
hyperparameters. This reduces the overall complexity of the
pipeline and also demonstrates that even without hyperpa-
rameter tuning, obtaining synthetically augmented data that
outperforms classical augmentation techniques is possible.

In this section, authors describe three approaches to syn-
thetic data augmentation that utilize the improvements to
the original GAN framework, namely Deep Convolutional
GAN (DCGAN), Auxiliary Classifier GAN (AC-GAN) and
Information-theoretic GAN (InfoGAN) for generating image
samples for augmentation.
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DCGAN

DCGAN was proposed by Radford et al. (2015), aiming to
improve the training stability along with the quality of gener-
ated images over Goodfellow’s vanilla GAN model. DCGAN
better incorporates the recently made advances for training
CNNs and uses fully-convolutional neural networks in its
architecture.

An important additional attribute of DCGAN is that the
discriminator can be used as a powerful tool for feature
extraction, as demonstrated in the paper (Radford et al.
2015). Its use, especially for unsupervised image classifi-
cation tasks, achieves performance that is competitive with
the state-of-the-art unsupervised models on benchmark prob-
lems such as CIFAR10, etc.

Architecture overview Stride convolutions are used rather
than pooling layers, and transposed convolutions are used in
place of up sampling so as to make both discriminator and
generator networks fully-convolutional. Figure 3 illustrates
the DCGAN generator framework as proposed by Radford
et al. (2015). Random numbers taken from a uniform distri-
bution (which is learned during the training) are sent as input
into the generator network, which encodes this noise into a
surface defect image, taken as the generator output. The gen-
erator framework contains 4 transposed convolutional layers
that up sample the image using a filter of the specified size,
and a fully connected layer reshaped to the requisite size.
The transposed convolutional layer, termed as the deconvo-
lutional layer can extend the image pixels by pushing zeroes
into the intermittent locations. Performing the convolution
operation across this extended image leads to the genera-
tor outputting an image of a larger size. Batch-normalization
is added to all convolutional layers of the framework, with
the final generator layer being the exception. The DCGAN
learning procedure is stabilized by normalizing the responses
to contain variance equal to 1, and mean equal to O across
the complete mini-batch. This also prevents full or partial
mode collapse for the generator framework. Figure 4 shows
a batch of images for the Inclusion class generated by the
trained DCGAN. It is important to note that the discrimina-
tor architecture is simply the generator architecture mirrored.

Implementation details The DCGAN was trained sepa-
rately on the input data in batches of 25 images. The learning
rate was set to 0.0002 and momentum (1) was set to 0.5.
The discriminator of the model had 5 hidden layers, out of
which 4 had leaky ReLU as an activation function while the
final had a linear activation function. The generator of the
network had 3 hidden layers with ReLU as the activation
function for all the layers. The DCGAN model was trained
for 100 epochs, and 24 synthetic batches of the same batch

z

(X,-mz {data)) [ X_fake )

n

H
a3
1]

G

7 (noise)

Fig. 3 Diagrammatic representation [figure taken from Frid-Adar et al.
(2018)] of the DCGAN Architecture as per the original implementation
given in Radford et al. (2015)

Fig.4 Images generated by DCGAN

size were generated for each class. Each batch was gener-
ated in the form of a grid of 5 x 5, which was sliced using
the image_slicer module available in python. Richter et al.
(2016) has been referred to train the DCGAN on a 5400
images-strong randomly selected subset (keeping classes bal-
anced) of the classical augmentation training set, to generate
3600 samples. Three such training sets were generated and
the mean score has been reported in “Results and Discus-
sion” section. The size of the resultant training set was kept
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Fig.5 Diagrammatic representation of the AC-GAN Architecture as
per the original implementation given in Odena et al. (2017)

the same so as to fairly compare the results to those of clas-
sic data augmentation. DCGAN requires a separate model
to be trained in each class, which makes it much more cum-
bersome to use than classical augmentation. In order to do
away with tuning the hyperparameters multiple times, same
hyperparameters have been used for all models.

AC-GAN

The second GAN model employed for this study is known as
the Auxiliary Classifier GAN (ACGAN) (Odena et al. 2017).
Itis used for conditional image synthesis and was formulated
as an extension to Conditional GANs (Mirza and Osindero
2014). Figure 5 illustrates the typical architecture for this
model. ACGAN allows model conditioning on information
obtained from an external data source in order to increase the
generated image sample quality. Additionally, it is perfectly
capable of incorporating the provided class labels from the
training set and thus produces labeled image samples. This is
useful for synthetic augmentation of datasets for supervised
learning tasks, e.g. surface defect detection and recognition
tasks.

Architecture Overview The architecture of ACGAN does
not appear much different from Goodfellow’s GAN. How-
ever, ACGAN has major differences in the training procedure
and function performed by the discriminator and generator.
The ACGAN discriminator is best served by being assigned
the task of reconstruction of side information rather than
simply inputting the side information into the framework
(Richter et al. 2016). To carry out this, the discriminator
is so adjusted as to consist of an auxiliary decoder neural
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architecture. Consequently, it not only provides a decision on
whether the image is real or fake but also proffers the class
label as an output. The ACGAN is employed in this work for
synthetic data augmentation requirements with only slight
modifications for the six classes. The auxiliary decoder in
the discriminatory framework successfully classifies all six
classes of surface defects when the training procedure as
described above is followed.

Implementation details The ACGAN was trained on the
input data in batches of size 25. The learning rate and P
were set at the same level as DCGAN, i.e., 0.0002 and 0.5
respectively. The discriminator of our ACGAN had 4 hid-
den layers with leaky ReLLU activation function for 3 layers
and linear activation function for 1 layer. The generator of
the network also had 4 hidden layers with the ReLU acti-
vation function for all the layers. The ACGAN model was
also trained for 100 epochs and 24 synthetic batches of the
same batch size were generated for each class. Each batch
was generated in the form of a grid of 5 x5, which was
sliced using the image_slicer library available in python.
Once again, ACGAN was trained on a 5400 images-strong
randomly selected subset (keeping classes balanced) of the
classical augmentation training set, to generate 3600 sam-
ples. Three such training sets were generated and the mean
score is reported in “Results and discussion” section.

InfoGAN

While changing the noise vector in GANS, it has consis-
tent and meaningful effects on the generator output (Radford
et al. 2015). There is no systematic way to find these struc-
tures because the generator uses the in a highly entangled
way. Therefore, individual dimensions of z show no corre-
spondence to semantic features in the data. The main idea of
InfoGAN is to disentangle the representation space so as to
decompose the domain knowledge existing in the data into a
set of meaningful factors of variation (Chen et al. 2016).

The generator input is split into two parts: the noise vector
and something referred to as the latent code vector. The latent
code targets the structured semantic features in the data, made
meaningful by maximizing the mutual information between
the code and the generator output.

Since both the noise vector, z and latent code vector, ¢ are
provided to the generator, the form of the generator is now
G(z,¢), and the latent factors can be discovered in an unsuper-
vised manner. Unlike in the original GAN, InfoGAN contains
an information-theoretic regularization to handle the prob-
lem of the triviality of codes, i.e. the latent codes ¢ and the
distribution of the generator G(z,c) should have high mutual
information (Fig. 6).

Overall, the image quality may not be as good as obtained
from DCGAN. The major benefit of InfoGAN is that the dis-
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Fig.6 Diagrammatic representation [figure taken from (Odena et al.
(2017)] of the InfoGAN Architecture as per the original implementation
given in Chen et al. (2016)

crete latent code allows for the conditional generation, and
the continuous latent code allows for disentanglement of the
latent space and control over the latent factors, as demon-
strated in Fig. 7.

Architecture overview The architecture of the InfoGAN is
effectively the same as the original GAN. However, it con-
tains an extra regularization term over the original GAN’s
objective function. In practice, calculating mutual infor-
mation is hard so standard variational arguments are used
to approximate a lower bound. This involves introducing
an auxiliary conditional distribution Q(clx), modeled by a

parameterized neural network, and is meant to approximate
the real conditional likelihood P(clx). Q and D as in the orig-
inal GAN, share all convolutional layers, and one final fully
connected layer output parameter for Q(clx).

InfoGAN contains a hyperparameter ) in the extra regu-
larization term. It is easily tunable and set to 1 for discrete
latent codes, whereas it’s smaller is used for continuous latent
codes. That ensures the L1 regularized term is on the same
scale as the original GAN objectives. Since GANSs are diffi-
cult to train, other approaches available on DCGAN in the
literature are used to stabilize InfoGAN training (Chen et al.
2016).

Implementation details The InfoGAN was trained on the
input data in batches of 30 images. The learning rate was set
to 0.003 and, 1 and B, were set to 0.5 and 0.999 respec-
tively. The discriminator of the model had 3 hidden layers,
with leaky ReLU as the activation function for all the lay-
ers. The generator had 5 hidden layers, out of which 4 had
ReLU as an activation function while the final layer had a
tanh activation function. The InfoGAN model was trained
for 120 epochs, and synthetic batches of the same batch
size were generated for each class. The grids were sliced
using the image_slicer module available in python. In this
experiment, two uniform continuous variables were used as
latent codes. For the discrete latent code, the softmax non-
linearity was used, while for continuous latent codes it was
found that simply treating the auxiliary distribution as a fac-
tored Gaussian was effective. The InfoGAN was also trained
on a 5400 images-strong randomly selected subset (keeping
classes balanced) of the classical augmentation training set,
to generate 3600 samples, keeping classes balanced and ran-
domly varying the continuous latent codes to synthetically

(@) Latent code: Lighting and

Fig.7 aLatent code: Lighting and b Latent code: Severity. The discrete
latent code ranging from O to 5 captures the 6 classes in the NEU-CLS
dataset. The continuous latent codes vary from —1 to 1 and the effects
are shown from left to right. In (a), the continuous latent code captures
the variation in lighting; In (b), the categorical code controls the severity
of the defect: for example, in the 2nd row which contains the inclusion

(b) Latent code: Severity

class, the size of the affected area seems to grow from left to right.
Similarly, in the 6th column, the scratched surface area also seems to
grow from left to right. This indicates that the InfoGAN has learned to
separate the size of the affected area by looking at a sufficient number
of samples in the data distribution. This can help us control and add
samples with additional domain knowledge into the augmented dataset
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add additional domain knowledge (Fig. 7). Three such train-
ing sets were generated, and the mean score is reported in
“Results and discussion” section.

Algorithm-GAN-based data augmentation

e Image data x1, X3, X3,...., X; with i images and their respec-
tive labels y1,y2,y3, ...., y; were initially present. The total
number of t classes was present. Therefore, {y1,y2,y3,....,
yi} € {0,1,2,3,....,i}.

e Build GANs for generating samples of known classes (in
the case of DCGAN, t separate models for each class).

e Use this data to train a robust CNN classifier.

e Generate classically augmented images using the training
data of j images per class.

e A subset of the resultant data with k images per class is
used to train the GANS.

e Newly generated images X1, X2, X3,...., Xk along with
their corresponding class labels Yy, Y, Y3,...., Yk are
used to train the CNN.

Results and discussion

In the present study, an attempt has been made to compare the
performance of CNNss for classification of surface defect data
over the course of multiple experiments, where the CNN’s are
trained using different augmentation pipelines. An experi-
ment is also performed with a pretrained CNN fine-tuned on
the surface defect data, achieving state of the art results. In
classification models, the confusion matrix is used for assess-
ing the model performance.

All evaluation metrics for multi-class classification prob-
lems can be easily understood in the context of the binary
classification problem (where the labels are either O or 1)
when considering each class one-by-one. Basic terminology
used in the confusion matrix is given as:

e True Positive (TP) Cases when the actual label is 1 and the
predicted label is also 1, i.e., positive label was correctly
predicted.

o True Negative (TN): Cases when the actual label is 0 and
the predicted label is also 0, i.e., the negative label was
correctly predicted.

e Fulse Positive (FP): Cases when the actual label is 0 and
the predicted label is 1. They are also known as “Type I
errors’.

e Fulse Negative (FN): Cases when the actual label is 1 and
the predicted label is 0. They are also known as “Type II
errors’.

The following terms are used to interpret the confusion
matrix

@ Springer

e Accuracy It tells us how many labels were correctly pre-
dicted out of all the predictions.

TP+TN
TP+TN+FP+FN

Accuracy =

o Sensitivity It tells us how often, the model predicts the label
as 1 when it is actually 1. It is also known as ‘True positive
rate’ or ‘Recall’.

TP

Sensitivity = ————

TP+FN

o Specificity It tells us how often, the model predicts the label
as 0 when itis actually 0. It is also known as ‘True negative
rate’

TN

SpECifiCity = m

The proposed model performs multiclass classification of
labels: RS, Pa, Cr, PS, In and Sc. The synthetically generated
datasets were tested using simple CNN for the performance
measures defined above. In the first experiment (Fig. 8), CNN
was trained on dataset augmented using classic methods. The
test accuracy was found out to be 90.28% for 20 epochs with
a batch size of 60. Table 1 describes the confusion matrix for
the first experiment. It can be observed from the confusion
matrix that the model has good sensitivity for Cr, In, PS, and
RS, but it is quite low for Pa and Sc. This results in a number
of misclassifications for Pa and Sc. The specificity remains
in an acceptable range for this model.

In the second experiment (Fig. 9), the CNN was trained for
the DCGAN augmented dataset of the same size under sim-
ilar training conditions, i.e., batch size of 60 for 20 epochs.
The test accuracy was found out to be 95.78%, which is better
for this dataset using a simple CNN without transfer learn-
ing. The sensitivity was within the acceptable range for all the
classes, though it reduced insignificantly. However, the over-
all misclassifications were reduced by a significant amount.
The specificity remained approximately the same for both
the experiments.

In the third experiment (Fig. 10), CNN was trained for the
ACGAN augmented dataset of the same size under the same
training conditions and the test accuracy was found out to be
92.78%.

In the fourth experiment (Fig. 11), CNN was trained on the
InfoGAN augmented dataset of the same size under the same
training conditions. This experiment showed the second-
highest test accuracy (lower than only the pipeline with
DCGAN augmentation) of 94.86%. Despite the InfoGAN
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Actual/Predicted Sensitivity | Specificity

92.00% 99.07%
87.00% 96.07%
84.33% 97.27%
98.67% 99.00%
93.67% 99.00%
86.00% 97.93%

Fig. 8 Confusion matrix for experiment-1 (Classic Augmentation)

Table 1 Comparison of classic

augmentation, DCGAN, Augmentation method Sensitivity Specificity Accuracy (%)

ACGAN, and InfoGAN for Mean (%)  Std.Dev (%)  Mean (%)  Std. Dev (%)

CNN baseline
Classic augmentation 90.28 4.99 98.06 1.11 90.28
DC-GAN augmentation 95.33 3.03 99.16 0.37 95.78
AC-GAN augmentation 92.28 1.76 98.56 0.38 92.78
InfoGAN augmentation 94.06 2.78 98.81 0.36 94.86

Actual/Predicted Sensitivity | Specificity

98.33% 99.20%
87.00% 99.20%
94.67% 98.87%
96.33% 99.67%
97.00% 99.47%
98.67% 98.53%

Sensitivity | Specificity

93.33% 98.33%
87.00% 98.33%
91.00% 98.80%
94.33% 99.27%
93.00% 98.47%
95.00% 98.13%

Sensitivity | Specificity

96.33% 98.53%
90.33% 98.67%
93.00% 99.13%
91.00% 99.47%
96.00% 98.60%
97.67% 98.47%

Fig. 11 Confusion matrix for experiment-4 (InfoGAN Aug.)

augmented dataset containing additional domain informa-  augmented pipeline. This is due to the image fidelity being
tion, the accuracy was lesser than that of the DCGAN lesser.
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True: RS, Pred: In True: In, Pred: PS True: PS, Pred: RS

T 7]
T3 R

True: Sc, Pred: 5c True: Cr, Pred: In True: In, Pred: PS

True: Sc, Pred: 5¢ True T’S. Pred: In True: RS, Pred: S¢

(a) Classic augmentation
Fig. 12 Predicted examples
Table 2 Comparison of the feature extraction approaches for classifi-

cation, namely AECLBP, SCN, Overfeat, DCGAN augmented CNN
baseline, and DCGAN augmented finetuned CNN

Classification method Accuracy (%)
AECLBP 97.22
SCN 98.60
Overfeat 98.70
CNN Baseline 95.78
Finetuned CNN 99.11

Figure 12 shows predicted examples from classic aug-
mented model and DC-GAN augmented model.

Table 2 analyses the results of different augmentation
methods used in our study. Training the dataset using the DC-
GAN augmentation method, yielded better results compared
to the classic augmentation method as well as AC-GAN and
InfoGAN augmentation methods. The CNN trained using
DC-GAN augmentation has a better sensitivity than the other
two methods, which signifies that it can predict positive
labels more accurately. It also has higher specificity which
implies that the CNN trained using the DC-GAN augmen-
tation method has a higher negative label prediction ability.
It also has higher overall accuracy as a result of its higher
overall classification ability.

From Table 1 it can be inferred that DCGAN Augmenta-
tion gives the best results. Therefore, in the fifth experiment
(Fig. 13), the pretrained CNN, described in “Convolutional
neural network” section, was fine tuned on the training data.
The training conditions were kept the same and the test accu-
racy achieved was 99.11%.

In the final experiment (Fig. 13) the classification result for
feature extraction from our proposed augmentation scheme
was compared with the several other methods, surpassing
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True: In, Pred: PS

True: In, Pred: In

True: PS, Pred: RS

True: Sc, Pred: RS
(b) DC-GAN augmentation

True- In, Pred: PS

them with the fine tuned CNN. Song and Yan’s approach
(Song and Yan 2013) introduces and uses the Adjacent Eval-
uation Completed Local Binary Pattern (AECLBP) feature
descriptor for the SVM. Feature extraction through Scat-
tered Convolutional Network (SCN) (Song et al. 2014), and
Overfeat Network (Sermanet et al. 2014) for classification
are also compared. Our approach simply utilizes the fea-
tures extracted from CNN. The impact of an information-rich
training set generated from our GAN based augmentation
scheme is that those features are enough for a higher clas-
sification performance. So, our approach has the added
advantage of not requiring any feature-engineering. That is
why a simple CNN trained on synthetically augmented data
outperforms more complex CNN based feature extractors
trained with classic augmentation.

Conclusion

The quality of the product plays an important role in deter-
mining the effectiveness of a manufacturing operation. In the
manufacturing industry, inspection not only plays an impor-
tant role in quality control, but it also works as a feedback
system for the process. Hence, defect classification is as
important as defect detection.

In this study, GANs are trained to augment the data
for surface defects on hot-rolled steel strips. The frame-
work has been developed in order to investigate the use
of synthetic augmentation for classification of manufactur-
ing datasets. Thus, a synthetic data augmentation scheme
is developed and compared with classic data augmentation
over the course of five experiments. Initially, the training set
was enlarged to a size of 9000 images using graphical trans-
formation methods such as flipping, rotation, and scaling.
The validation accuracy of the CNN model was found out
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Actual/Predicted Cr In Pa PS RS Sc Sensitivity | Specificity
Cr 300 0 0 0 0 100% 99.60%
In 1 296 3 0 0 98.67% 99.60%
Pa 1 3 295 1 0 98.33% 99.80%
PS 0 3 0 297 0 0 99.00% 100%
RS 1 0 0 299 0 99.67% 99.93%
Sc 3 0 0 0 297 99.00% 100%

Fig. 13 Confusion Matrix for Experiment-5

to be 90.28%. In the second experiment, the CNN is trained
using DCGAN-augmented data having an identical size and
under the same training parameters. The models predicted
the defect classes with an accuracy of 95.78%, which was a
significant improvement over the model proposed in the first
experiment. In the third experiment, DC-GAN is substituted
with AC-GAN, keeping the remainder of the data augmenta-
tion pipeline identical. The accuracy of this model was found
out to be 92.78%. The accuracy of AC-GAN was observed
to be less than that of DC-GAN by 3%. In the fourth exper-
iment, InfoGAN is employed, keeping the remainder of the
data augmentation pipeline identical and the accuracy of this
model was found to be 94.86%, less than that of DC-GAN
by 0.92%.

Overall, for hot-rolled steel strips, an improvement in
the performance of 5.5% is achieved using DCGAN-based
augmentation over Classic augmentation. The observed
experimental results show the efficacy and robustness of the
proposed model and can be used as a benchmark. In our fifth
experiment, using a pretrained CNN for transfer learning,
state of the art results on NEU CLS were achieved obtaining
a performance gain of 3.33% over the baseline.

The main finding of this work is that the proposed
method shows great potential for being adopted as a stan-
dard augmentation technique for deep learning for industrial
applications, which generally have small-sized datasets. The
suggested GAN-based data augmentation procedure offers a
great advantage by significantly cutting down the time taken
for, and the opportunity cost of, collection of real-world data.
Furthermore, our pipeline provides another benefit—it may
be used to train successful models for other applications (such
as for structural defects using X-ray images) through domain
adaptation, reducing the time even further. It is also easy to
run (once trained) and thus can be physically employed at
a manufacturing plant using cameras and single-board com-
puters.

This study can be extended to other models. As the clas-
sification is performed using a basic CNN, any development
on the base architecture will also be reflected in the final
model. This has been demonstrated using transfer learning.
Similarly, more advanced GAN models may also positively
influence the augmentation process.

Future research could scrutinize the segmentation prob-
lem for manufacturing defect datasets. This is an inspiring
problem as it is required to generate both synthetic surface
defect images and their ground truth masks. The applied
methodology may be extended for the purpose to improve
industry performance in different sectors.
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